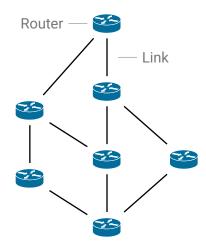
### Fibbing: Central Control over Distributed Routing

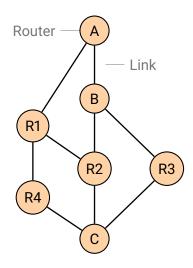
www.fibbing.net



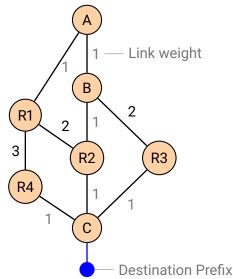
Olivier Tilmans


IRTF Open Meeting Nov. 14, 2016

Joint work with S. Vissicchio (UCL), L. Vanbever (ETH Zürich) and J. Rexford (Princeton)


### Fibbing

# Fibbing

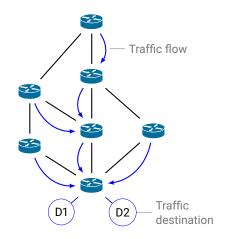

#### Consider this example network.



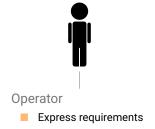
#### Consider this example network.



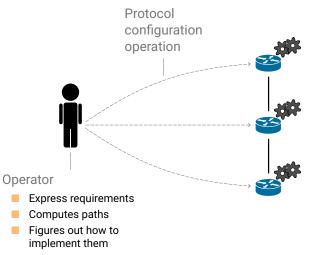
Link-state Interior Gateway Protocols (IGPs) exchange reachability information to infer the topology of the network.



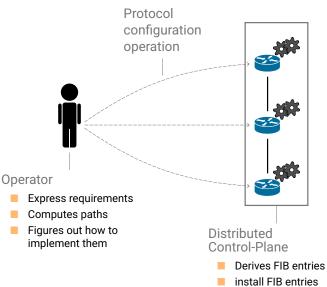

The intra-domain traffic flows along the shortest path on the shared topology.


**Control-Plane** 

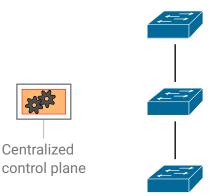
В 2 **R1** 2 3 R2 **R**3 **R4** С


#### Data-Plane

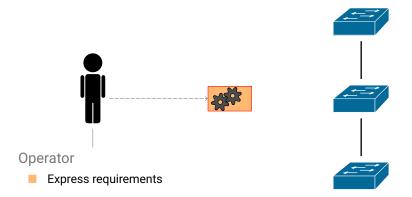



### IGPs cause operator to follow a *descriptive* management process.

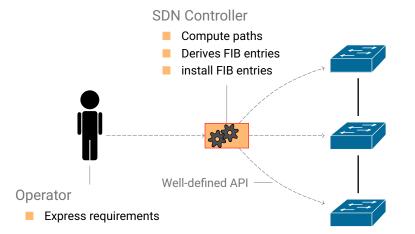



### IGPs cause operator to follow a *descriptive* management process.




## IGPs cause operator to follow a *descriptive* management process.




# Software-Defined Networking (SDN) enables *declarative* management.



# Software-Defined Networking (SDN) enables *declarative* management.



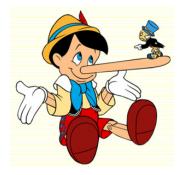
# Software-Defined Networking (SDN) enables *declarative* management.



### SDN *sacrifices* the robustness and scalability of distributed protocols.

|               | Traditional | SDN     |
|---------------|-------------|---------|
| Manageability | low         | high    |
| Flexibility   | low         | highest |
| Scalability   | by design   | ad hoc  |
| Robustness    | high        | low     |

# The networking world has two paradigm, based on opposed principles.

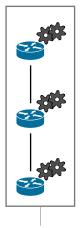

|               | Traditional | SDN     |
|---------------|-------------|---------|
| Manageability | low         | high    |
| Flexibility   | low         | highest |
| Scalability   | by design   | ad hoc  |
| Robustness    | high        | low     |

## We propose a middleground approach, named *Fibbing*.

|               | Traditional | Fibbing   | SDN     |
|---------------|-------------|-----------|---------|
| Manageability | low         | high      | high    |
| Flexibility   | low         | high      | highest |
| Scalability   | by design   | by design | ad hoc  |
| Robustness    | high        | high      | low     |

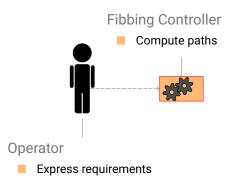
#### Fibbing: Central Control over Distributed Routing

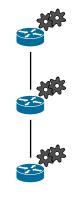
www.fibbing.net



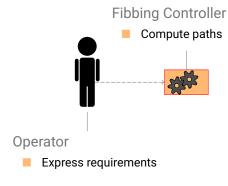

#### 1. Controlling distributed protocols

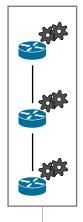
- 2. Case study: surviving flash crowds
- 3. Fibbing today's networks
- 4. Food for thoughts


### Fibbing uses an hybrid control plane.





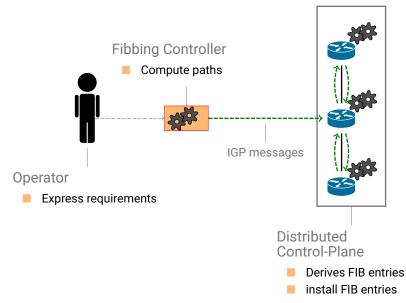


Distributed control plane


### Fibbing centralizes high level routing decisions.

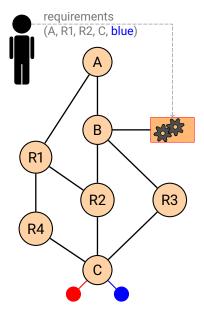




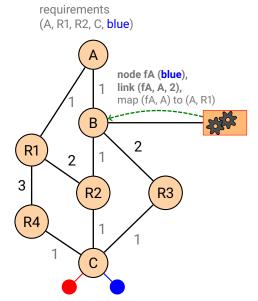
### Fibbing keeps the route installation distributed.



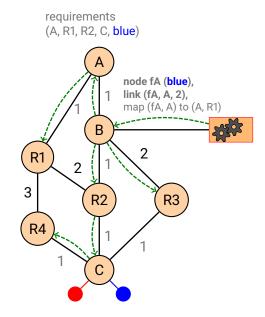




Distributed Control-Plane

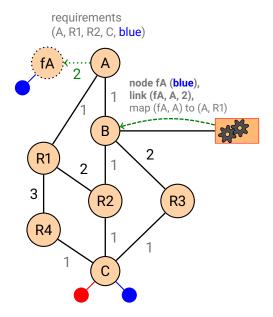
- Derives FIB entries
- install FIB entries


#### We study which IGP messages to inject.

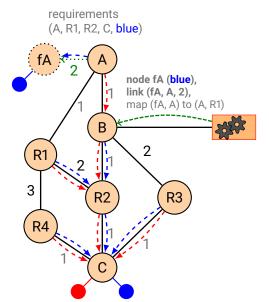



#### Operators specify paths that must be enforced.



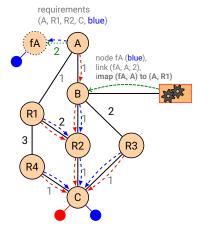

# The controller injects one IGP message adding a fake node and links.



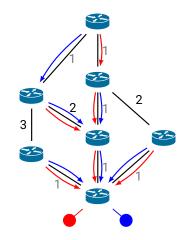

#### IGP flooding propagates the information.



#### The Fibbing message *augments* the topology.

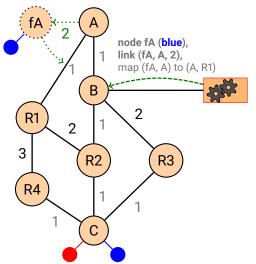



### Augmented topologies translate into new control-plane paths.

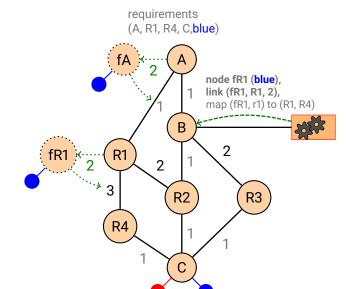



Augmented topologies translate into new data-plane paths.

#### **Control-Plane**

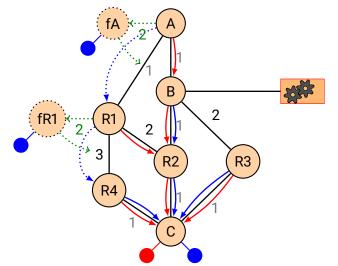



#### **Data-Plane**




## Chaining multiple fake nodes enables to program complex paths.

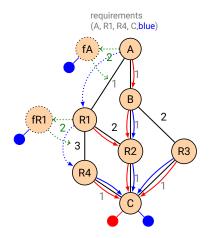
requirements (A, R1, R4, C,**blue**)

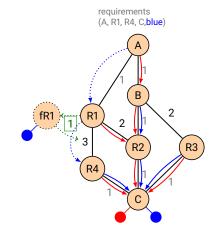



## Chaining multiple fake nodes enables to program complex paths.



## Chaining multiple fake nodes enables to program complex paths.


requirements (A, R1, R4, C,**blue**)



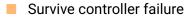

Augmented topologies can be reduced to optimize the number of fake nodes.

Naive augmentation

#### **Reduced augmentation**






#### Fibbing preserves the scalability of IGPs.

We can compute augmented topologies in  $\mathcal{O}(ms)$ Ensures quick reaction to changes

We can reduce augmented topologies in O(s)
Ensures limited control-plane overhead

Fibbing leverages the robustness of IGPs.

Fast failure detection and recovery



Support fail-close and fail-open semantics

Fibbing can enforce any set of loop-free paths, on a per destination basis.

#### Fibbing: Central Control over Distributed Routing

www.fibbing.net



1. Controlling distributed protocols

2. Case study: surviving flash crowds

3. Fibbing today's networks

4. Food for thoughts

#### Flash crowds cause service disruption.

Video delivery services require good network performance

### Flash crowds cause service disruption.

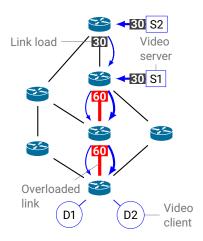
Video delivery services require good network performance

- Protecting the services against flash crowds is challenging:
  - 1. Traditional traffic engineering techniques perform poorly;
  - 2. Over-provisioning is expensive.

Fibbing reduces the need for over-provisioning by enabling real-time traffic engineering.

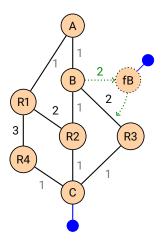
**Experiment setup** 

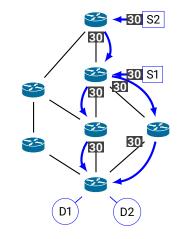
Network with 2 video streaming servers


Multiple clients are competing for bandwidth

The network controller is able to detect flash crowds

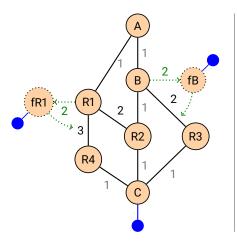
## The initial IGP configuration has a bottleneck towards router C.

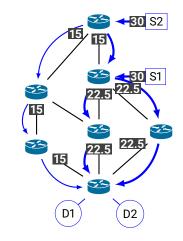

**Control-Plane** 


В 2 **R1** 2 3 R2 R3 R4 С



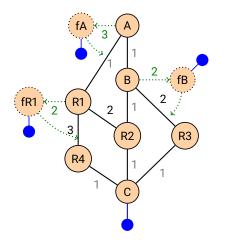
## Fibbing can program on-demand ECMP to spread the load

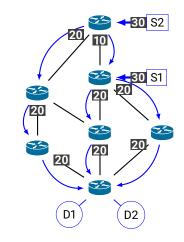

#### **Control-Plane**



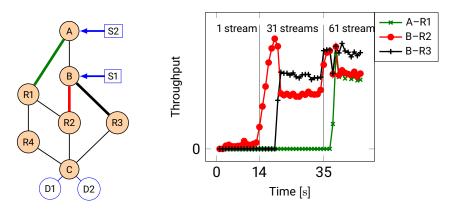



## Fibbing can program on-demand ECMP to spread the load


#### **Control-Plane**







## Fibbing controls the splitting ratios across equal-cost paths.

#### **Control-Plane**





## As the demand increases, the Fibbing controller adds more paths to spread the load.



We initially have 1 video stream from S1 to D1.

At time t = 14s, we start 30 new streams from S1 to D1.

At time t = 35s, we start 30 streams from S2 to D2.

## Fibbing: Central Control over Distributed Routing

www.fibbing.net



- 1. Controlling distributed protocols
- 2. Case study: surviving flash crowds
- 3. Fibbing today's networks
- 4. Food for thoughts

### We have a working Fibbing controller prototype

The controller maintains an OSPF adjacency to one router

Topology discovery using the adjacency

Tested against IOS, NX-OS, JunOS

## Fake nodes can be injected using LSA types 5/7

### Leverages the forwarding address field

Advertize reachability towards prefix, with cost, using specified IP next hop

# The controller multiplexes multiple virtual routers $\mathcal{N}$ successive fake nodes towards the same prefix require $\mathcal{N}$ different router-ids

## Using T5/7 LSAs has (almost) no overhead on routers and is fast.

No measurable impact on SPF duration

10 000 LSAs eat 14.5 MB of DRAM

900 $\mu$ s to push one fibbed route to the FIB

### Using T5/7 LSAs comes at a price

Different expressivity model

Can only affect prefixes from other T5/T7 LSAs

Does not work with IS-IS!

## Fibbing: Central Control over Distributed Routing

www.fibbing.net




- 1. Controlling distributed protocols
- 2. Case study: surviving flash crowds
- 3. Fibbing today's networks
- 4. Food for thoughts

## Centrally modifying the shared topology is powerful

Gives some control over BGP/MPLS-LDP

Simplify configurations through exception-based routing



#### What would be the right abstraction?

### Fibbing: Central Control over Distributed Routing

www.fibbing.net



Tell me lies, tell me sweet little lies — Fleetwood Mac

Olivier Tilmans olivier.tilmans@uclouvain.be