
Hebrew U. net. seminar

Laurent Vanbever

June, 9 2015

ETH Zürich (D-ITET)

Boosting existing networks with SDN

A bird in the hand is worth two in the bush

Software-Defined Network

Why?!

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

A network is a distributed system whose behavior

depends on each element configuration

Configuring each element is often done manually,

using arcane low-level, vendor-specific “languages”

!	
ip	 multicast-‐routing	
!	
interface	 Loopback0	
	 ip	 address	 120.1.7.7	 255.255.255.255	
	 ip	 ospf	 1	 area	 0	
!	
!	
interface	 Ethernet0/0	
	 no	 ip	 address	
!	
interface	 Ethernet0/0.17	
	 encapsulation	 dot1Q	 17	
	 ip	 address	 125.1.17.7	 255.255.255.0	
	 ip	 pim	 bsr-‐border	
	 ip	 pim	 sparse-‐mode	
!	
!	
router	 ospf	 1	
	 router-‐id	 120.1.7.7	
	 redistribute	 bgp	 700	 subnets	
!	
router	 bgp	 700	
	 neighbor	 125.1.17.1	 remote-‐as	 100	
	 !	
	 address-‐family	 ipv4	
	 	 redistribute	 ospf	 1	 match	 internal	 external	 1	 external	 2	
	 	 neighbor	 125.1.17.1	 activate	
	 !	
	 address-‐family	 ipv4	 multicast	
	 	 network	 125.1.79.0	 mask	 255.255.255.0	
	 	 redistribute	 ospf	 1	 match	 internal	 external	 1	 external	 2	

interfaces	 {	
	 	 	 so-‐0/0/0	 {	
	 	 	 	 	 	 	 	 unit	 0	 {	
	 	 	 	 	 	 	 	 	 	 	 	 family	 inet	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 address	 10.12.1.2/24;	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 	 	 	 family	 mpls;	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 ge-‐0/1/0	 {	
	 	 	 	 	 	 	 	 vlan-‐tagging;	
	 	 	 	 	 	 	 	 unit	 0	 {	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 vlan-‐id	 100;	
	 	 	 	 	 	 	 	 	 	 	 	 family	 inet	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 address	 10.108.1.1/24;	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 	 	 	 family	 mpls;	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 unit	 1	 {	
	 	 	 	 	 	 	 	 	 	 	 	 vlan-‐id	 200;	
	 	 	 	 	 	 	 	 	 	 	 	 family	 inet	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 address	 10.208.1.1/24;	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
…	
}	
protocols	 {	
	 	 	 	 mpls	 {	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 interface	 all;	
	 	 	 	 }	
	 	 	 	 bgp	 {	

Cisco IOS Juniper JunOS

Configuring each element is often done manually,

using arcane low-level, vendor-specific “languages”

“Human factors are responsible

for 50% to 80% of network outages”

Juniper Networks, What’s Behind Network Downtime?, 2008

In contrast, SDN simplifies networks…

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

Control plane

Data plane

… by removing the intelligence from the equipments

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

… by removing the intelligence from the equipments

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

… and centralizing it in a SDN controller

that can run arbitrary programs

SDN Controller

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

Data plane

open API

forwarding entries

The SDN controller programs forwarding state

in the devices using an open API (e.g., OpenFlow)

SDN Controller

Sounds great, but…

Sounds great, but…

SDNTraditional

How do you go from a traditional network  
to a SDN-enabled one?

?

Well… not easily

Deploying SDN requires to upgrade network …

devices

management systems

operators

challenging, time-consuming and therefore costly

To succeed, SDN-based technologies

should possess at least 3 characteristics

Small investment

Low risk

High return

provide benefits

under partial deployment

(ideally, with a single switch)

Low risk

High return

Small investment

To succeed, SDN-based technologies

should possess at least 3 characteristics

Small investment

Low risk

High return

require minimum changes

to operational practices

be compatible with existing

technologies

To succeed, SDN-based technologies

should possess at least 3 characteristics

Small investment

Low risk

High return solve a timely problem

To succeed, SDN-based technologies

should possess at least 3 characteristics

This talk is about two such SDN-based technologies

Supercharged

performance boost

Fibbing

improved flexibility

central control over

distributed system

Fibbing

improved flexibility

Supercharged

performance boost

reduce convergence time

by 1000x

Supercharged

performance boost

Fibbing

improved flexibility

central control over

distributed system

Fibbing

improved flexibility

Supercharged

performance boost

Wouldn’t it be great to manage

an existing network “à la SDN”?

Wouldn’t it be great to manage

an existing network “à la SDN”?

what does it mean?

Cisco Juniper Alcatel

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Cisco IOS Juniper JunOS Alcatel TimOS

Instead of configuring a network

using configuration “languages” …

Cisco Juniper Alcatel

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Control-Plane

Data-Plane

SDN Controller

Forwarding entries

(Floodlight, OpenDaylight,…)

… program it from a central SDN controller

For that, we need an API

that any router can understand

Cisco Juniper Alcatel

Control-Plane

Data-Plane

Control-Plane

Data-Plane

Control-Plane

Data-Plane

SDN Controller

? ? ?

Routing protocols are perfect candidates

to act as such API

e.g., shortest-path routing

nearly all routers support OSPF

routers must speak the same language

messages are standardized

behaviors are well-defined

implementations are widely available

Fibbing

@SIGCOMM’15

Fibbing
= lying

@SIGCOMM’15

to control router’s forwarding table

Fibbing

@SIGCOMM’15

lying made useful
Fibbing1

Expressivity
any path, anywhere

2

Scalability
1 lie is better than 2

3

Central Control Over Distributed Routing
Joint work with: Stefano Vissicchio, Olivier Tilmans and Jennifer Rexford

lying made useful
Fibbing1

Expressivity
any path, anywhere

Scalability
1 lie is better than 2

Central Control Over Distributed Routing

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

A router implements a function

from routing messages to forwarding paths

IP router

functioninput output

The forwarding paths are known,

provided by the operators or by the controller

Forwarding

Paths

Known

Routing 
Messages

MPLS

OSPF

BGP

functioninput output

input output

Known

The function is known, from the protocols’

specification & the configuration

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

function

Inverse

Given a path and a function, our framework computes

corresponding routing messages by inverting the function

Forwarding

Paths

Routing 
Messages

MPLS

OSPF

BGP

functioninput output

IGP

BGP

Router Input

Network graph

Routing paths

Family

Dijkstra

Decision process

Algorithm/

Function

Link-State

Path-Vector

The type of input to be computed depends

on the routing protocol

Protocol

IGP

BGP

Router Input

Network graph

Routing paths

Family

Dijkstra

Decision process

Algorithm/

Function

Link-State

Path-Vector

We focus on routers running link-state protocols

that take the network graph as input and run Dijkstra

Protocol

3

10

1

1

A B

C D

destinationsource

traffic flow

Consider this network where a source

sends traffic to 2 destinations

3

10

1

1

A B

C

desired

3

10

1

1

A B

C D

initial

As congestion appears, the operator wants

to shift away one flow from (C,D)

D

impossible to achieve by  
reweighing the links

Moving only one flow is impossible though

as both destinations are connected to D

desired

3

10

1

1

A B

C
3

10

1

1

A B

C D D

initial

3

1

1

A B

C

Let’s lie to the router

10

D

3

1

1

A B

C

Let’s lie to the router

10

D

Fibbing  
 controller

routing
session

3

1

1

A B

C

Let’s lie to the router, by injecting

fake nodes, links and destinations

10

D

Fibbing  
 controller

routing
session

3

1

1

A B

C

Let’s lie to the router, by injecting

fake nodes, links and destinations

10

D

Fibbing  
 controller

A

C

Lie

15

11

3

1

1

A B

C

Lies are propagated network-wide

by the protocol

10

D

Fibbing  
 controller

A

C

A

C

Fibbing  
 controller

3

1

1

A B

C

10

D

15

1

1

After the injection, this is the topology seen

by all routers, on which they compute Dijkstra

Fibbing  
 controller

3

1

1

A B

C

Now, C prefers the virtual node (cost 2)

to reach the blue destination…

1

15

D

10
1

Fibbing  
 controller

3

1

1

A B

C

As the virtual node does not really exist,

actual traffic is physically sent to A

1

15

D

10
1

Fibbing
workflow

+

network
graph

path
reqs.

Fibbing starts from the operators requirements

and a up-to-date representation of the network

Syntax of Fibbing’s path requirements language

Operators requirements are expressed

in a high-level language

Compilation

+

network
graph

path
reqs.

forwarding
DAGs

Out of these,

the compilation stage produces DAGs

A B

C D

Path(C A B d1)

Forwarding graphs (DAGs) are compiled

from high-level requirements

d1

DAG

+

augmented
graph

Augmentation

forwarding
DAGs

network
graph

path
reqs.

The augmentation stage augments the network graph

with lies to implement each DAG

3

1

1

A B

C

1

15

D

10
1

The augmentation stage augments the network graph

with lies to implement each DAG

A B

C D

Compilation output Augmentation output

+

augmented
graph

reduced  
graph

Optimization

forwarding
DAGs

network
graph

path
reqs.

The optimization stage reduces

the amount of lies necessary

+

reduced  
graph

running
network

Injection

augmented
graph

forwarding
DAGs

network
graph

path
reqs.

The injection stage injects

the lies in the production network

lying made useful
Fibbing

Expressivity
any path, anywhere

2

Scalability
1 lie is better than 2

Central Control Over Distributed Routing

Fibbing is powerful

Theorem

Fibbing is powerful

Fibbing can program

any set of non-contradictory paths

Theorem

Fibbing is powerful

Fibbing can program

any set of non-contradictory paths

Theorem

Fibbing is powerful

any path is loop-free

paths are consistent

(e.g. [s1, a, b, d] and

[s2, b, a, d] are inconsistent)

(e.g., [s1, a, b, a, d] is not possible)

Fibbing can program

any set of non-contradictory paths

10

3

3

3

3

10

1

1

A B C D

E F G H

Fibbing can load-balance traffic

on multiple paths

10

3

3

3

3

10

1

1

A B C D

E F G H

source destination

0.75

0.75

0.50

demand

A B C D

E F G H

10

3

3

3

3

10

1

1

Links have a capacity of 1

0.75

0.75

0.50

0.75

0.50

0.75

A B C D

E F G H

10

3

3

3

3

10

1

1

Links have a capacity of 1

0.75

0.75

0.50

0.75

0.50

0.75

A B C D

E F G H

10

3

3

3

3

10

1

1

With such demands and forwarding,

the lower path is congested (1.25)

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

E F G H

0.25

0.25

Congestion can be alleviated by splitting

the orange flow into two equal parts (.25)

0.75

0.75

0.50

0.75

0.50

0.75

A B C D

E F G H

10

3

3

3

3

10

1

1

This is impossible to achieve

using a link-state protocol

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

E F G H

0.50

This is easily achievable with Fibbing

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

E F G H

0.50

6

1

50

One lie is introduced,

announcing the orange destination

10

3

3

3

3

10

1

1

0.75

0.75

0.50

0.75

0.75

A B C D

F G H

0.25

0.25

6

1

50

Now E has two equal cost paths (7) to reach

only the orange destination and use them both

E

lying made useful
Fibbing

Expressivity
any path, anywhere

Scalability
1 lie is better than 2

3

Central Control Over Distributed Routing

Scalability

space

of lies

time

to compute lies

Scalability

space

of lies

time

to compute lies

Scalability

Computing virtual topologies is easy:

polynomial in the number of requirements

initial desired

A

B

C

3
1

3
A

B

C

3
1

3

Computing virtual topologies is easy:

polynomial in the number of requirements

initial desired

A

B

C

3
1

3
A

B

C

3
1

3

virtual

?

Computing virtual topologies is easy:

polynomial in the number of requirements

For each router r whose next-hop

for a destination d changes to j:

For each router r whose next-hop

for a destination d changes to j:

Let w be the current path weight between r and d

Create one virtual node v advertising d  
with a weight x < w

Connects it to r and j

Create one virtual node v advertising d  
with a weight x < w

Create one virtual node v advertising d  
with a weight x < w

always possible

by reweighting the initial graph

initial desired

A

B

C

3
1

3
A

B

C

3
1

3

virtual

?

Computing virtual topologies is easy:

polynomial in the number of requirements

initial desired

A

B

C

3
1

3
A

B

C

3
1

3
A

B

C

2

1

3

virtual

Computing virtual topologies is easy:

polynomial in the number of requirements

1

1

3

The resulting topology can be huge

and each router needs to run Dijkstra on it

Dijkstra’s algorithm

complexity

O(|E| + |V| log |V|)

#nodes #links

space

of lies

time

to compute lies

Scalability

Lots of lies are not required,

some of them are redundant

Good news

Let’s us consider

a simple example

1

1 10

100

1

1

A B

C D E F

1

1 10

100

1

1

A B

C D E F

destination

A B

C D E F

source

1

1 10

100

1

1

A B

C D E F

1

1 10

100

1

1

original shortest-path

“down and to the right”

A B

C D E F

1001

1 10

1

1

desired shortest-path

“up and to the right”

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Our naive algorithm would

create 5 lies—one per router

A B

C D E F

1001

1 10

1

1

100

1

A single lie is sufficient (and necessary)

We can minimize the topology size

using an Integer Linear Program

time

Naive

optimal

large

Integer Linear
Program

slow

optimalspace
(topology size)

While efficient,

an ILP is inherently slow

Computation time matters

in case of network failures

3

1

1

A B

C

1

15

D

1 10

3

1

1

A B

C

1

15

D

1 10

3

1
A B

C

1

15

D

1 10

A loop is created as C starts to use A

which still forwards according to the lie

3

1
A B

C

1

15

D

1 10

The solution is to remove the lie

3

1
A B

C D

10

The solution is to remove the lie

Upon failures, the network topology

has to be recomputed, fast

time

Naive

optimal

large

Integer Linear
Program

slow

optimalspace
(topology size)

time

Naive

optimal

large

Merger

fast

small

Integer Linear
Program

slow

optimalspace
(topology size)

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

time

Naive

optimal

large

Merger

fast

small

Integer Linear
Program

slow

optimalspace
(topology size)

time

Naive

optimal

large

Merger

fast

small

Integer Linear
Program

slow

optimalspace
(topology size)

Let’s compare the performance

of Naive and Merger

% of nodes changing next-hop

computation
time (s)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

% of nodes changing next-hop

computation
time (s)

0 20 40 60 80

% of nodes changing next−hop

tim
e

(s
ec

)

0.
00

1
0.

1
10

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

naive (median)

Naive computes entire virtual topologies in ms

naive (median)

% of nodes changing next-hop

computation
time (s)

0 20 40 60 80

% of nodes changing next−hop

tim
e

(s
ec

)

0.
00

1
0.

1
10

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

merger (median)

Merger is relatively slower,

but still, sub-second

topology
increase (%)

% of nodes changing next-hop

0

20

80

40

60

0 20 60 8040

% of nodes changing next-hop

0 20 40 60 80

0
20

40
60

80

% of nodes changing next−hop

of

 fa
ke

 n
od

es
 (%

 o
f t

ot
al

 n
od

es
)

simple
merger (95−th)
merger (median)
merger (5−th)

% of nodes changing next-hop

0

20

80

40

60

0 20 60 8040

naive (median)

topology
increase (%)

% of nodes changing next-hop

Naive introduces one lie

per changing next-hop

0 20 40 60 80

0
20

40
60

80

% of nodes changing next−hop

of

 fa
ke

 n
od

es
 (%

 o
f t

ot
al

 n
od

es
)

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 40 60 80

0
20

40
60

80

% of nodes changing next−hop

of

 fa
ke

 n
od

es
 (%

 o
f t

ot
al

 n
od

es
)

simple
merger (95−th)
merger (median)
merger (5−th) naive (median)

% of nodes changing next-hop

0

20

80

40

60

0 20 60 8040

topology
increase (%)

% of nodes changing next-hop

Merger reduces the size of the topology

by 25% on average (50% in the best case)

merger (median)

We implemented a fully-fledged Fibbing

prototype and tested it against real routers

We implemented a fully-fledged Fibbing

prototype and tested it against real routers

How many lies can a router sustain?

How long does it take to process a lie?

2 measurements

1000

5 000

10 000

router
memory (MB)

0.7

76.0

153

50 000

100 000

6.8

14.5

fake
nodes

DRAM is cheap

Existing routers can easily sustain

Fibbing-induced load, even with huge topologies

Because it is entirely distributed,
programming forwarding entries is fast

1000

5 000

10 000

50 000

100 000

fake
nodes

installation
time (s)

0.9

44.7

89.50

4.5

8.9

894.50 μs/entry

lying made useful
Fibbing

Expressivity
any path, anywhere

Scalability
1 lie is better than 2

Central Control Over Distributed Routing

Simplify controller implementation

most of the heavy work is still done by the routers

Maintain operators’ mental model

good old protocols running, easier troubleshooting

Facilitate SDN deployment

SDN controller can program routers and SDN switches

Fibbing realizes some of the SDN promises

today, on an existing network

reduce convergence time

by 1000x

Supercharged

performance boost

Fibbing

improved flexibility

IP routers are pretty slow to converge

upon link and node failures

R1

R1

0

1

R3

R2

R1

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

prefix Next-Hop

R1’s Forwarding Table

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

All 512k entries point to R2

because it is cheaper

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1

512k IP 
prefixes

0

1
Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bb

Provider #1 ($)

IP: 203.0.113.1

MAC: 01:aa

R3

R2

Upon failure of R2,

all 512k entries have to be updated

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

Upon failure of R2,

all 512k entries have to be updated

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(02:bb, 1)

(01:aa, 0)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(02:bb, 1)

(02:bb, 1)

(01:aa, 0)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(02:bb, 1)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

R1’s Forwarding Table

(02:bb, 1)

(02:bb, 1)

(02:bb, 1)

R1
1

Provider #2 ($$)

IP: 198.51.100.2

MAC: 02:bbR3

We measured how long it takes

in our home network

ETH recent routers

25 deployed

Cisco Nexus 9k

1M$ cost

convergence
time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case

median case

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

~2.5 min.
Traffic can be lost for several minutes

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Entries do not share any information

even if they are identical

The problem is that

forwarding tables are flat

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Entries do not share any information

even if they are identical

Solution: introduce a hierarchy

as with any problem in CS…

The problem is that

forwarding tables are flat

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

(01:aa, 0)

…… …

Next-Hop

256k
…… …

100.0.0.0/8

Router Forwarding Table

(01:aa, 0)

(01:aa, 0)

(01:aa, 0)

replace this…

port 0

port 1

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

0x666

…… …

pointer

256k
…… …

100.0.0.0/8

0x666

0x666

0x666

pointer NH

0x666 (01:aa, 0)

port 0

port 1

… with that

Mapping table

Pointer table

Router Forwarding Table

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

0x666

…… …

pointer

256k
…… …

100.0.0.0/8

0x666

0x666

0x666

port 0

port 1

Upon failures, we update the pointer table

Mapping table

Router Forwarding Table

pointer NH

0x666

Pointer table

(01:aa, 0)

prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

512k

0x666

…… …

pointer

256k
…… …

100.0.0.0/8

0x666

0x666

0x666

port 0

port 1

Here, we only need to do one update

Mapping table

Router Forwarding Table

pointer NH

0x666

Pointer table

(02:bb, 1)

Limited availability

only a few vendors, on few models

Expensive

by orders of magnitude

Limited benefits

of fast convergence, if not used network-wide

Nowadays, only high-end routers

have hierarchical forwarding table

prefix

1.0.0.0/241 0x666
…… …

pointer

512k 200.99.0.0/24 0x666

pointer NH

0x666 (02:bb, 1)

Mapping table

Pointer table

We can build a hierarchical table

prefix

1.0.0.0/241 0x666
…… …

pointer

512k 200.99.0.0/24 0x666

pointer NH

0x666 (02:bb, 1)

IP router

SDN switch

Mapping table

Pointer table

We can build a hierarchical table

using two adjacent devices

Supercharged

Supercharged

boost routers performance

by combining them with SDN devices

We have implemented a fully-functional

“router supercharger”

Supercharged router

SDN

Routing
controller

SDN 
controller

…

Routing
sessions

OpenFlow

REST

peern

peer1

peer2

We used it to supercharge

the same router as before

ETH recent routers

25 deployed

Cisco Nexus 9k

1M$ cost

~2k$

(old) SDN HP switch

cost

+

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150convergence

time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

While the router took more than 2 min

to converge in the worst-case

convergence
time (s)

of prefixes

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

150ms
supercharged

The supercharged router systematically

converged within 150ms

Other aspects of a router performance

can be supercharged

offload to SDN if no local forwarding entry

overwrite poor routers decisions

systematic sub-second convergence

convergence time

memory size

bandwidth management

central control over

distributed system

This talk was about two SDN-based technologies

Fibbing

improved flexibility

Supercharged

performance boost

reduce convergence time

by 1000x

that improve today’s networks

Laurent Vanbever

www.vanbever.eu

Boosting existing networks with SDN

A bird in the hand is worth two in the bush

Hebrew U. net. seminar

June, 9 2015

http://www.vanbever.eu

