
Central Control over Distributed Routing

fibbing.net

SIGCOMM

Stefano Vissicchio

18th August 2015

UCLouvain

Joint work with

O. Tilmans (UCLouvain), L. Vanbever (ETH Zurich) and J. Rexford (Princeton)

http://fibbing.net

SDN
(e.g., OpenFlow, Segment Routing)

Traditional
(e.g., IGP, distributed MPLS)

SDN is based on antithetical architecture

with respect to traditional networking

Centralization improves network management,

but sacrifices robustness of distributed protocols

Manageability

Flexibility

Scalability

Robustness

SDN

ad hoc

low

highest

high

Traditional

IGP, tunnelling
(RSVP-TE)

by design

high

low

low

We propose Fibbing, a hybrid SDN architecture

Fibbing
central control over link-state IGPs

Manageability

Flexibility

Scalability

Robustness

SDN

ad hoc

low

highest

high

Traditional

IGP, tunnelling
(RSVP-TE)

by design

high

low

low

Fibbing

by design

high

high

high

Fibbing combines advantages

of SDN and traditional networking

Manageability

Flexibility

Scalability

Robustness

Fibbing

by design

high

high

high

same as SDN

per-destination
full control

thanks to partial
distribution

some function
are distributed

Fibbing combines advantages

of SDN and traditional networking

Central Control over Distributed Routing

fibbing.net

Manageability1

Scalability

2 Flexibility

3

Robustness4

http://fibbing.net

Central Control over Distributed Routing

fibbing.net

Manageability1

Scalability

2 Flexibility

3

Robustness4

http://fibbing.net

SDN achieves high manageability

by centralizing both computation and installation

derives FIB entries

install FIB entries

computes paths
requirements

e.g., OpenFlow
controller or RCP

Fibbing is as manageable as SDN,

but centralizes only high-level decisions

Fibbing
controller computes paths

requirements

Fibbing keeps installation distributed,

relying on distributed protocols

distributed
control-plane install FIB entries

computes FIB entries

data-plane

Distributed installation is controlled

by injecting carefully-computed information

control-plane
messages

We study which messages to inject

for controlling intra-domain routing protocols

forwarding

paths

weighted

topology

shortest-path

computation

link-state IGP

input function output

The output of the controlled protocol

is specified by operators’ requirements

forwarding

paths

weighted

topology

shortest-path

computation

input function

provided by operators
or controller optimizers

(e.g., DEFO)

link-state IGP

output

Inverse

To control IGP output, the Fibbing controller

inverts the shortest-path function

forwarding

paths

weighted

topology

shortest-path

computation

Central Control over Distributed Routing

fibbing.net

Manageability1

Scalability

2 Flexibility

3

Robustness4

http://fibbing.net

A B

C

destinationsource

Consider this simple network

(implemented with Cisco routers)

D1

D2

X

A B

C X

An IGP control-plane computes

shortest paths on a shared weighted topology

D1

D2

control-plane

3

1

110

shortest paths

IGP shortest paths are translated into

forwarding paths on the data-plane

D1

D2

data-plane

traffic flow

A B

C

X

A B

C X D1

D2

control-plane

3

1

110

In Fibbing, operators can ask

the controller to modify forwarding paths

requirement
(C,A,B,X,D2)

A B

C X D1

D2

3

1

110

The Fibbing controller injects information on

fake nodes and links to the IGP control-plane

node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

110

requirement
(C,A,B,X,D2)

Informations are flooded

to all IGP routers in the network

node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

110

requirement
(C,A,B,X,D2)

Fibbing messages augment

the topology seen by all IGP routers

1

D2 node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

110V1

requirement
(C,A,B,X,D2)

Augmented topologies translate

into new control-plane paths

A B

C X D1

D2

3

1

110

requirement
(C,A,B,X,D2)

1

D2

V1

node V1,
link (V1,C),

map (V1,C) to (C,A)

Augmented topologies translate

into new data-plane paths

A B

C

D1

D2

X

A B

C X D1

D2

3

1

110

1

D2

V1

node V1,
link (V1,C),

map (V1,C) to (C,A)

requirement
(C,A,B,X,D2)

Theorem

Fibbing can program

arbitrary per-destination paths

Any set of forwarding DAGs can be enforced by Fibbing

Fibbing can program

arbitrary per-destination paths

paths to the same destination do not create loops

Theorem Any set of forwarding DAGs can be enforced by Fibbing

By achieving full per-destination control,

Fibbing is highly flexible

fine-grained traffic steering (middleboxing)

per-destination load balancing (traffic engineering)

backup paths provisioning (failure recovery)

Theorem Any set of forwarding DAGs can be enforced by Fibbing

Central Control over Distributed Routing

fibbing.net

Manageability1

Scalability

2 Flexibility

3

Robustness4

http://fibbing.net

We implemented a Fibbing controller

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced  
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

We also propose algorithms

to compute augmented topologies of limited size

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced  
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

compilation
heuristics

per-destination
augmentation

cross-destination
optimization

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced  
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

compilation
heuristics

per-destination
augmentation

1. simple
2. merger

cross-destination
optimization

For our Fibbing controller, we propose

algorithms to be run in sequence

A B

C D E F

1

1 10

100

1

1

original shortest-path

“down and to the right”

Consider the following example,

with a drastic forwarding path change

A B

C D E F

1001

1 10

1

1

desired shortest-path

“up and to the right”

A B

C D E F

1001

1 10

1

1
11

1

1

1

Simple adds one fake node for every

router that has to change next-hop

1

1

1

1

Merger iteratively merges fake nodes

(starting from Simple’s output)

A B

C D E F

1001

1 10

1

1
11

1

1

1
A B

C D E F

1001

1 10

1

1
1

Merger iteratively merges fake nodes

(starting from Simple’s output)

This way, Merger programs multiple

next-hop changes with a single fake node

A B

C D E F

1001

1 10

1

1

1

A B

C D E F

1001

1 10

1

1

1

Previous SDN solutions (e.g., RCP) cannot do the same

This way, Merger programs multiple

next-hop changes with a single fake node

Simple and Merger achieve different trade-offs

in terms of time and optimization efficiency

and up to 90% with cross-destination optimization

Merger reduces fake nodes by up to 50%

Merger takes 0.1 seconds

Simple runs in milliseconds

We ran experiments on Rocketfuel topologies,

with at least 25% of nodes changing next-hops

We implemented the machinery to

listen to OSPF and augment the topology

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced  
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

OSPF interaction
module

Experiments on real routers show that

Fibbing has very limited impact on routers

router
memory (MB)

fake
nodes

1 000

5 000

10 000

0.7

76.0

153

50 000

100 000

6.8

14.5

DRAM is cheap

>> # real routers

Experiments on real routers show that

Fibbing has very limited impact on routers

1 000

5 000

10 000

router
memory (MB)

0.7

76.0

153

50 000

100 000

6.8

14.5

fake
nodes

DRAM is cheap

CPU utilization always under 4%

Experiments on real routers show that

Fibbing does not impact IGP convergence

Upon link failure, we registered no difference in the

(sub-second) IGP convergence with

up to 100,000 fake nodes and destinations

no fake nodes

Experiments on real routers show that

Fibbing achieves fast forwarding changes

installation
time (seconds)

0.9

44.7

89.50

4.5

8.9

894.50 μs/entry

fake
nodes

1 000

5 000

10 000

50 000

100 000

Central Control over Distributed Routing

fibbing.net

Manageability1

Scalability

2 Flexibility

3

Robustness4

http://fibbing.net

Fibbing improves robustness

by relying on the underlying IGP

thanks to its shared topology

see paper

IGP provides fast failure detection and control-plane sync

IGPs re-converge quickly [Filsfils07]

no controller action needed in some cases

Fibbing supports fail-open and fail-close semantics

D2

V1

A B

C X

We ran a failure recovery case study,

with distributed Fibbing controller

D1

D2

(fail-open(D2));

(fail-close(D1));

Fibbing survives replica failures

with no impact on forwarding

Time (s)
0 5 10 15 20 25 30 35 40 45 50 55

0

.2

.4

.6

.8

1

1.2

Th
ro

ug
hp

ut
 (M

bp
s)

replica
fails

(A,B)
fails

(B,X)
fails

(B,X)
up

(A,B)
up

flow 1
flow 2

D2

V1

A B

C X D1

D2

(fail-open(D2));

(fail-close(D1));

Fibbing reacts to network failures

quickly re-optimizing forwarding

Time (s)
0 5 10 15 20 25 30 35 40 45 50 55

0

.2

.4

.6

.8

1

1.2

Th
ro

ug
hp

ut
 (M

bp
s)

replica
fails

(A,B)
fails

(B,X)
fails

(B,X)
up

(A,B)
up

flow 1
flow 2

A B

C X D1

D2

(fail-open(D2));

(fail-close(D1));

Fibbing reacts to partitions,

respecting fail-close and fail-open semantics

Time (s)
0 5 10 15 20 25 30 35 40 45 50 55

0

.2

.4

.6

.8

1

1.2

Th
ro

ug
hp

ut
 (M

bp
s)

replica
fails

(A,B)
fails

(B,X)
fails

(B,X)
up

(A,B)
up

flow 1
flow 2

A B

C X D1

D2

(fail-open(D2));

(fail-close(D1));

Time (s)
0 5 10 15 20 25 30 35 40 45 50 55

0

.2

.4

.6

.8

1

1.2

Th
ro

ug
hp

ut
 (M

bp
s)

replica
fails

(A,B)
fails

(B,X)
fails

(B,X)
up

(A,B)
up

flow 1
flow 2

Time (s)
0 5 10 15 20 25 30 35 40 45 50 55

0

.2

.4

.6

.8

1

1.2

Th
ro

ug
hp

ut
 (M

bp
s)

replica
fails

(A,B)
fails

(B,X)
fails

(B,X)
up

(A,B)
up

flow 1
flow 2

Fibbing recovers correctly

(as soon as failures are fixed)

D2

V1

A B

C X D1

D2

(fail-open(D2));

(fail-close(D1));

Fibbing shows the benefits of

central control over distributed protocols

heavy work is still done by routers

avoids SDN deployment hurdles

Simplify controllers and improves robustness

network-wide automated control

Realizes SDN management model

Works today, on existing networks

Stefano Vissicchio

stefano.vissicchio@uclouvain.be

Tell me lies, tell me sweet little lies

— Fleetwood Mac

Central Control over Distributed Routing

fibbing.net

http://fibbing.net

